
APPLICATION
NOTE

AP-624

Introduction to On-Board
Programming with Intel
Flash Memory

Order Number: 292179-002

November 1996

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

*Third-party brands and names are the property of their respective owners.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1996 CG-041493

AP-624

3

CONTENTS

PAGE

1.0 INTRODUCTION..5

2.0 PROGRAMMER TERMINOLOGY DEFINITIONS..5
2.1 In-System-Write (ISW)...5
2.2 On-Board Programmer (OBP)..5
2.3 Component Programmer ..6

3.0 ON-BOARD PROGRAMMING STRENGTHS AND LIMITATIONS ...6

4.0 OBP PLATFORMS..7

5.0 HARDWARE DESIGN CONSIDERATIONS FOR OBP INTERFACES..11

6.0 SUMMARY ..12

APPENDIX A PROGRAMMER VENDORS ..13

APPENDIX B ADDITIONAL INFORMATION..14

FIGURES
Figure 1. The System CPU Controls In-System Writes to the Flash Memory Component..................................5
Figure 2. The OBP Programmer Controls Flash Memory Update Operations...5
Figure 3. The Component Programmer Controls Update of the Flash Memory...6
Figure 4. IC Containing JTAG Boundary-Scan Register ...9
Figure 5. The System CPU’s JTAG Test Access Port Provides an Interface to Program Flash Memory9

AP-624

4

REVISION HISTORY
Number Item

-001 Original Version

-002 Updated boot block JTAG programming calculation to reflect word programming time.

AP-624

5

1.0 INTRODUCTION

A variety of options exist to program Intel Flash memory
components. These alternatives include:

• Engineering programmer— An operator loads and
programs one component at a time.

• Gang programmer— The operator loads and programs
multiple components simultaneously.

• Automated handling system— The component loads
automatically into a programmer using a mechanical
handler.

• On-Board Programming— Off-board hardware and
software programs the flash memory while it is
installed on the printed circuit board (PCB).

• In-System-Write— The system CPU programs the
flash memory in the user application.

This application note explores the strengths, limitations,
programming methods and design considerations for one
common option: on-board programming (OBP).

Each OBP environment is unique and requires
examination by hardware and software engineers to insure
appropriate functionality. If you have OBP questions not
covered in this application note, please contact your local
OBP solution provider (see the Appendix) or Intel
technical support for more information.

2.0 PROGRAMMER
TERMINOLOGY DEFINITIONS

The terms “on-board programming” and “in-system
write” are often inappropriately interchanged. To
eliminate confusion, we will first review definitions of the
three main programming techniques.

2.1 In-System-Write (ISW)

The system CPU executes flash memory program and
erase algorithms (see Figure 1). New data comes from one
of several sources: serial or parallel port, floppy or hard
disk drive, modem, etc. You create the algorithms for
flash memory component erase and program operations.

Flash
Memory

System PCB

CPUNew Code/
Data

2179_01

Figure 1. The System CPU Controls In-System
Writes to the Flash Memory Component

2.2 On-Board Programmer (OBP)

In this approach, the OBP hardware controls update
operations to the flash memory (see Figure 2), after first
removing the PCB from the rest of the system. The OBP
powers down the processor or holds it in a high-
impedance state. The system PCB, with the flash memory
installed, connects to an external “computer” such as a
board tester or board level programmer. This off-board
intelligence provides the necessary commands, voltages,
control signals, addresses and data to erase and program
the flash memory.

OBP
Programmer

Flash
Memory

System PCB

CPU

New Code/
Data

2179_02

Figure 2. The OBP Programmer Controls Flash
Memory Update Operations

AP-624

6

2.3 Component Programmer

This approach was first made popular in the days of
PROMs and EPROMs. In this approach, you remove the
flash memory from the PCB and socket it in dedicated
hardware called a component programmer (see Figure 3).
Intel works closely with a wide range of component
programmer vendors to ensure support for all of its flash
memory products. The programmer manufacturer updates
the flash memory algorithms for erase and program
operations when necessary.

Component
Programmer

New Code/
Data

Flash
Memory

2179_03

Figure 3. The Component Programmer Controls
Update of the Flash Memory

3.0 ON-BOARD PROGRAMMING
STRENGTHS AND
LIMITATIONS

Each programming solution, including OBP, provides
both strengths and limitations. You should analyze the
production requirements of your project and consider all
capabilities and shortcomings before determining if OBP
is an appropriate programming solution for your project.

• Strength: OBP Reduces Manual Handling of
Flash Memory Components

As flash memory package dimensions decrease, pin-
to-pin spacing narrows and susceptibility to
mechanical problems increases, due to improper
component handling.

Manual programming is susceptible to mechanical
problems when the operator handles each individual
component. Misalignment of component pins occur
when the component is inappropriately inserted or
removed from programming sockets. You can repair
misaligned pins, but the cost is high, the yield is not

100% and the rework creates delays in delivering the
end product.

OBP reduces susceptibility to misaligned component
pins. With OBP, the flash memory is soldered onto the
PCB using surface mount assembly equipment and
operators do not handle the individual components.
Without operator intervention, the risk of
inadvertently damaging component pins is
significantly reduced.

• Strength: OBP Enables Just-In-Time Code
Updates to Assembled Products

You can easily perform Just-In-Time (JIT) code
updates to assembled products with OBP. For
example, imagine the manufacturing process for
cellular telephones, which are assembled, tested and
stored until needed. When a customer orders the
cellular telephone, you use OBP to update the flash
memory with the most recent firmware, Just-In-Time.
By performing JIT firmware updates, the customer
receives the most recent cellular telephone features,
including country- and region-specific language and
other information, and the best value for the price.

In contrast, let’s investigate a case that does not use
OBP. A preprogrammed flash memory component is
soldered onto the cellular telephone PCB. After
assembling the telephone, the software engineer
discovers a firmware bug, fixes it and releases new
firmware. A technician unsolders the flash memory
component from the PCB, erases it and updates it in a
component programmer with the latest code. The
technician then resolders the flash memory to the
PCB. The PCB rework required to update the
telephone firmware significantly increases costs and
creates delays in delivering the cellular telephone to
the customer.

• Limitation: OBP Can Increase System Cost and
Development Time

Sometimes the design engineer must create additional
hardware and/or software to perform OBP. For
example, to link the OBP to the PCB the design
engineer may need to add an interface connector.
Additionally, to isolate certain PCB circuits from the
programmer driver circuits, design engineers must
incorporate jumpers or active devices, such as FET
switches or tri-state buffers, into the design. The
additional hardware costs increase the per-system bill
of materials, while the additional software slows time-
to-market.

AP-624

7

• Limitation: On-Board Programmers May
Program Flash Memory Slower Than Other
Programming Methods

The time needed to program flash memory with a
board level programmer may be longer than the time
required for component programmers. With board
level programmers, programming time may increase
due to operating system overhead. The board level
programmer must contend with high capacitive
loading on the PCB, with powering down peripheral
circuits around the flash memory and with potential
power and ground noise problems. Software
precautions, such as increased settling time delays
designed to avoid potential hardware problems,
account for some increase in operating system
overhead. This potentially results in a decreased
manufacturing line beat-rate (the number of products
that go through the manufacturing flow in a given
amount of time).

4.0 OBP PLATFORMS

Be careful to select the appropriate programmer platform
for OBP. This section identifies some technical items to
consider when investigating board level programmers:

• The OBP power supply must be capable of supplying
current to all components on the PCB

• Power supply tolerances must conform to Intel Flash
memory requirements

• Address, data and control signal drive capability must
meet Intel Flash memory specifications when applied
to the flash memory component

• Minimize inductance and capacitance introduced to
the circuit by the programmer and interface

Multiple board level programming platforms exist for
flash memory programming. The following is a summary
of each solution: Automatic-Test-Equipment, OBP Board
Level Programmer, JTAG Test Access Port, and modified
component programmers:

• Automatic Test Equipment

Manufacturing engineers use Automatic Test
Equipment (ATE) to perform functional testing on
assembled PCBs. In addition, ATE can perform flash
memory programming functions if desired.

You can use a bed-of-nails interface to link your ATE
with the PCB. Bed-of-nails refers to multiple spring
loaded test points that connect to tester driver circuits.
When you secure the PCB on top of these test points,
some test points contact flash memory device pins and
some contact PCB traces called test land pads which
connect to flash memory device pins. The ATE
software defines which test points are active. This
software enables the ATE to drive signals on test
points that contact appropriate flash memory device
pins, while disabling test points that do not contact
flash memory pins.

If you intend to use ATE to program flash memory,
you need both sufficient ATE hardware and software
knowledge and sufficient flash memory product
knowledge. You will create erase and program
routines on your ATE. These routines are then
integrated into the test flow and are used to program
the flash memory. Your ATE vendor will most likely
be able to assist you in developing necessary hardware
and software (see the Appendix).

ATE typically performs programming operations
quicker than other OBP programming methods. To
gain the best ATE programming performance, you
must optimize the ATE code. Be sure to perform only
necessary programming operations. A thorough
understanding of flash memory programming
requirements, as outlined in the device datasheet and
other technical documentation, will help you reduce
cycle times and minimize overall programming time.
To check cycle time, connect an oscilloscope to the
least significant address line. This will provide an
accurate representation of programming cycle time on
your ATE.

• OBP Board Level Programmer

Component programmers designed specifically for
board level programming are lower initial cost OBP
solutions as compared to ATE solutions. Manu-
facturing engineers use board level programmers for
either in-line programming (the programming process
is part of the manufacturing assembly process) or off-
line programming. With off-line programming, the
OBP programs flash memory separate from the
manufacturing assembly line.

OBP programmer vendors provide erase and program
algorithms with the purchase of a board level
programmer. When semiconductor manu-facturers
improve their product and/or launch new

AP-624

8

products, the programmer vendor updates the
programming algorithm. New device support, or
updated programming algorithms, are delivered to
owners of board level programmers via mail or
downloaded from manufacturers’ bulletin board
services.

The owner of a board level programmer needs to
create a hardware interface linking the PCB
application to the programmer. When the hardware
interface is functional the user links commercially
available erase and program algorithms to create a
programming flow applicable to the project. The
project design engineer will address issues such as
device power up sequence, appropriate delay between
different commands and power and GND transient
voltage spikes. These issues contribute to increased
programming times.

Device programming times with OBP programmers
are typically longer than ATE programming times.
Therefore, board programmers are commonly used for
lower volume board programming.

• Using the JTAG Test Access Port or Other Serial
Channel to Program Flash Memory

The JTAG Test Access Port (TAP) is an emerging
OBP method. JTAG communicates serially (one bit at
a time) with the PCB application. JTAG is a viable
programming alternative in a manufacturing
environment if your PCB application contains a
JTAG-compliant microprocessor and you can tolerate
somewhat longer programming times than are capable
with other OBP methods. Alternatively, JTAG can be
used to program boot code into the flash memory, with
the remainder of the device programmed via in-system
write.

What Is JTAG?

The Joint Test Action Group (JTAG), formed in the
1980’s by key electronic manufacturers, sought to create
PCB and IC test standards. The JTAG team created the
IEEE specification 1149.1-1990 Standard Test Access
Port and Boundary-Scan Architecture. This
specification defines precisely how to design JTAG logic
into an IC to enable JTAG testing.

The JTAG specification stipulates that a single cell of a
shift-register is designed into the IC logic and linked to
every pin of the IC (see Figure 4). This single cell, known
as the Boundary-Scan Cell (BSC), links the JTAG
interface to the IC’s internal core logic. All BSCs of a
particular IC constitute the Boundary-Scan Register
(BSR). BSR logic becomes active when performing
JTAG testing, otherwise it remains passive under normal
IC operation.

How Can I Use the JTAG Test Access Port to
Program my Flash Memory?

By utilizing JTAG communication equipment that inserts
into your PC add-in card slot and connects to your JTAG-
compliant PCB application, you send commands and data
through the JTAG Test Access Port to the system
microprocessor. These commands and data instruct the
microprocessor to program the flash memory (see Figure
5).

JTAG communication equipment (see Appendix) allows
communication with any JTAG-compliant micro-
processor. You create the software to program flash
memory. Programming the flash memory at high speeds
requires that you develop optimized code for the JTAG
communication equipment, necessitating a clear
understanding of the flash memory programming
algorithm and JTAG communication equipment.

A JTAG compliant microprocessor has the following four
pins included in its pin architecture:

TCK – Test Clock Input. A free running clock
separate from the system clock.

TDI – Test Data In. Data is shifted into the
JTAG compliant device via TDI.

TDO – Test Data Out. Data is shifted out of
the JTAG compliant device via TDO.

TMS – Test Mode Select. TMS commands
select test modes as defined in the JTAG
specification.

AP-624

9

TDI TDO

TMS TCKTAP CONTROLLER

IC PIN

BOUNDARY-SCAN CELL

IC CORE LOGIC

2179_04

Figure 4. IC Containing JTAG Boundary-Scan Register

Intel
Flash

Memory

E28F200BV

Intel386™ EX
Microprocessor

Instruction
Register

Address

Data

Control

SYSTEM PCB

Boundary-Scan
Register

TAPJTAG Interface

TCK
TDI
TDO
TMS

2179_05

Figure 5. The System CPU’s JTAG Test Access Port Provides an Interface to Program Flash Memory

AP-624

10

How Fast Can I Program Flash Memory Using the
JTAG Test Access Port?

Programming time depends on several variables: TCK
frequency, JTAG-compliant microprocessor speed, number
of BSC bits and flash memory density. This example will
assume the following variables:

JTAG Programming Variables:

TCK = 40 ns Cycle Time (25 MHz TCK)

Number of BSC bits = 132
(Intel386 EX Microprocessor in a 132-pin PQFP
package)

Memory Density = 2 Mbit
(E28F200BV Intel Flash Memory)

Calculate JTAG Programming Time per 2-Mbit
Data:

132 BSC bits × 40 ns (TCK) = 5.28 µs

*10 signal transitions × 5.28 µs = 52.8 µs / 1 word
of data

128 Kwords (flash memory density) × 52.8 µs =
6.92 seconds to program 2 Mbit of data

* 10 signal transitions to drive “high” and “low”
levels on address, control and data signals.

Calculate JTAG Programming Time for One
16-Kbyte Boot Block:

8 Kwords (Boot Block size) × 52.8 µs =
0.43 seconds to program 8 Kwords of data

Remember, each JTAG programming setup is different.
Programming time calculations are dependent on variables
associated with the individual setup and vary with different
hardware configurations.

The techniques described in this section may also be
applicable in some cases to proprietary serial
communications methods offered with various CPU
architectures. Examples include serial debug and high-
speed input-output ports. Contact your CPU vendor for
more information.

• Use Your Component Programmer to Perform
OBP

In some cases, you may choose to use a component
programmer to perform OBP. The main advantage of
this approach is its low cost, especially if you already
own a component programmer. However, this
technique also has its limitations. Signal degradation
from the programmer to the PCB can cause unreliable
results. Also, the component programmer only supplies
sufficient current to power the flash memory
component, not the entire PCB.

To program flash memory using this method you need
to build a cable to connect the component programmer
to your OBP application. One end of the cable connects
into the component programmer DIP socket, the other
end connects to your OBP application.

If you select this method to perform OBP you should
also adhere to the following guidelines:

 Use shielded heavy gauge wire for power, GND,
address, control and data signals. The GND shield
provides a solid connection from the component
programmer to the PCB application and reduces
susceptibility to signal crosstalk.

 Keep the cable length as short as possible.

 Place two VCC bypass capacitors, 0.1 µF and
4.7 µF, at both ends of the cable.

To validate signal integrity at the PCB end of the cable
use an oscilloscope to check address, control and data
signals. Look for rise and fall signal transitions from
10% to 90%. These signal transitions must be free of
oscillations. You only need to perform this check upon
initial implementation of this programming method.

Since component programmers typically provide
sufficient power for single components only, you should
isolate the flash memory power, GND, addresses, data
and control signals from the rest of the PCB during
programming and erase operations. After updating the
flash memory, reconnect these signals to the remainder
of the system circuitry.

AP-624

11

5.0 HARDWARE DESIGN
CONSIDERATIONS FOR OBP
INTERFACES

This section provides an overview of common design
considerations to help reduce susceptibility to programming
problems in the board level environment. The suggestions
in this section apply to both interfaces between the OBP
and PCB applications and to the PCB application.

The following high-speed design rules help reduce
susceptibility to transient voltage spikes when incorporated
in an OBP interface design:

Design Consideration 1: Minimize Power Supply
Interconnections

Keep power supply interconnections to a minimum.
Interconnections add inductance and capacitance to a
circuit and decrease and distort the circuit’s ability to
operate at high frequencies. When you have fewer power
supply interconnections to the interface board or PCB
application you will experience less transient voltage
spikes.

Keep VCC and GND inductance minimal. Direct
connections from the component socket to VCC and GND
planes on the system board is optimal to reduce inductance.

Minimize susceptibility to signal crosstalk. Crosstalk, the
electrical influence of one signal on another, alters the high
frequency operating characteristics in a circuit. To reduce
signal crosstalk, avoid locating flash memory control signal
PCB traces in close proximity to power supply traces or
input/output traces.

Design Consideration 2: VCC PCB Layout

To ensure proper flash memory operation, the VCC voltage
tolerance cannot exceed recommended device operating
specifications. This design consideration helps to maintain
a stabilized VCC.

Transient voltage spikes on VCC or GND are a common
problem associated with OBP. Transient voltage spikes can
permanently damage the flash memory. You should
incorporate the following design precautions into the PCB
design to minimize susceptibility to voltage spikes.

Your hardware design should incorporate a multiple layer
PCB with dedicated VCC and GND planes. The capacitive
effect gained by using planes for power and GND help
suppress high frequency transient voltage spikes. In
addition, use bypass capacitors to reduce the amplitude of
transient voltage spikes. One 0.1 µF VCC bypass capacitor

placed as close to the flash memory VCC pin(s) as possible
will reduce high frequency voltage spikes. For every eight
flash memory components, a 4.7 µF bypass capacitor
placed as close to the VCC pin as possible will reduce low
frequency voltage spikes. In the event that less than eight
flash memory components are used a single 4.7 µF bypass
capacitor is still necessary.

Design Consideration 3: VPP PCB Layout

The VPP power supply provides the high voltage necessary
to perform flash memory erase and program operations.
During these times, the component uses maximum VPP
current, IPP. If you are simultaneously programming or
erasing multiple flash memory components, the current
requirement, IPP, increases proportionately with the number
of flash memory components used. Be sure that the board
level programmer can supply sufficient IPP current to
program and erase all flash memory components. Maintain
VPP within specified tolerances at all times; over-voltage
can damage the device and under-voltage can decrease
device reliability. Check the board level programmer
specifications to compare the maximum power supply
current rating to the calculated current demand for your
application. You must base the calculated current demand
on the number of flash memory components in your
application. Information gathered from this check will help
determine if the board level programmer can perform erase
and program operations on your application.

To avoid damage to other PCB components during
programming and erase operations you must isolate VPP to
the flash memory component(s). Make VPP PCB traces as
wide as possible, .050 mils or greater in width, and as short
as possible. Additionally, a 0.1µF bypass capacitor placed
close to the flash memory VPP pin will help reduce the
amplitude of transient voltage spikes.

Design Consideration 4: Disable the
Microprocessor before Programming

If your flash memory application contains a microprocessor
and you are not performing JTAG programming, you must
disable the microprocessor outputs before attempting to
program the flash memory. You can accomplish this by
using the microprocessor’s RESET, HOLD or ONCE
modes. Any of these modes place the microprocessor
control signals and local bus in a high-impedance state. In
this state you avoid bus contention between the
microprocessor and flash memory signals.

In addition, be careful not to forward bias pins on
peripheral components around the flash memory. You can
avoid forward biasing by maintaining stringent voltage
tolerances supplied by the OBP.

AP-624

12

Design Consideration 5: Beware of VCC and GND
Transient Voltage Spikes

VCC and GND transient voltage spikes are a common
source of problems in embedded system applications. These
transient spikes cause various programming and erase
problems. False verify errors, a condition that occurs when
the flash memory programs or erases correctly but fails to
verify data correctly, is prevalent in some marginally
designed system environments. Look for documentation of
this problem, and possible solutions, in the Intel technical
brief: Designing for Successful Flash Memory Read and
Verify Operations. You can obtain this technical brief from
the Intel literature center by requesting document number
297691.

Design Consideration 6: Do Not Combine Flash
Memory Components from Different
Manufacturers Unless Absolutely Necessary

Flash memory components from different manufacturers
may share similar part numbers and device pin-out
architectures but require vastly different programming
algorithms. OBP problems occur if you mix flash memory
components from different manufacturers into the same
application. Avoid compatibility problems by using flash
memory from a single manufacturer whenever possible.

Design Consideration 7: Isolate High-Voltage
Flash Memory Signals from Other
PCB Circuits

To avoid potential damage to circuits on the PCB
application, you must isolate high-voltage flash memory
signals from other PCB circuits. Vpp and RP# are set to
12V when programming or erasing some flash memory
components. If these signals connect to other non-flash
memory PCB circuits and are not isolated during
programming or erase operations, the 12V will damage
them. You must incorporate a method to disconnect high-
voltage signals from other PCB circuits prior to
programming or erasing the flash memory components.

6.0 SUMMARY

OBP is one of several programming alternatives available
to flash memory users. OBP users can select programming
vehicles that range from Automatic-Test-Equipment to
dedicated board level programmers and JTAG Test Access
Port programming schemes.

To insure that the OBP programming vehicle you select
reliably programs flash memory, you should understand
and implement the high-speed design considerations
outlined in this document. Each design consideration
applies to both the interface between the OBP
programming vehicle and to the PCB application on which
you perform OBP.

Each OBP programming technique is unique. An OBP
method that applies to one manufacturing requirement may
not apply to another. Software and hardware engineers
should carefully analyze individual project requirements
and implement suggestions from this document as required.

AP-624

13

APPENDIX A
 PROGRAMMER VENDORS

NOTE

OBP options were selected from products offered by a variety of vendors. Since this industry develops many new
solutions each year, Intel recommends that designers contact vendors for their latest products. Intel will continue to
work with the industry to develop optimum solutions for programming flash memories. The hardware vendor remains
solely responsible for the design, sale, and functionality of its product, including liability arising from product
infringement or product warranty.

Programmer Manufacturers:

Data I/O Corp.
10525 Willows Rd. NE
Redmond, WA 98073
(800) 247-5700 Customer Resource Center
http://www.data-io.com/

SMS Mikrocomputer Systeme GmbH
Im Grund 15
D-88239 Wangen
Germany
49-7522-97280
49-7522-972850 FAX

System General Corp.
1603-A S. Main St.
Milpitas, CA 95035
(800) 967-4776/408-263-6667
(408) 262-9220 FAX

BP Microsystems, Inc.
1000 N. Post Oak Rd. #225
Houston, TX 77055-7237
(800) 225-2102/713-688-4600
(713) 688-0920 FAX

Needham's Electronics
4630 Beloit Drive #20
Sacramento, CA 95838
(916) 924-8037
(916) 924-8065 FAX
http://www.quiknet.com/~needhams/

Elan Digital Systems Ltd.
Elan House, Little Park Farm Rd.
Segensworth West, Fareham
Hants PO15 5SJ
United Kingdom
44-1489-579799
44-1489-577516 FAX

Automatic-Test-Equipment Manufacturers:

Hewlett Packard
Contact your local HP Board
Test Representative

GenRad
2480 N. First Street, Suite 100
San Jose, CA 95131-1028
(408) 321-3512
(408) 432-0267 FAX

Teradyne
2625 Shadelands Drive
Walnut Creek, CA 94598
(510) 932-6900
(510) 932-7965 FAX

JTAG Equipment Manufacturer:

Corelis, Inc.
12607 Hidden Creek Way
Cerritos, CA 90703
(310) 926-6727
(310) 404-6196 FAX

AP-624

14

APPENDIX B
ADDITIONAL INFORMATION

Device datasheets provide in-depth information on device operating modes and specifications.

The 16-Mbit Flash Memory Product Family User’s Manual (order number 297372) gives detailed information on the
enhanced automation of Intel’s 16-/32-Mbit FlashFile and Fast Flash memories. Included flowcharts assist you in
developing system software.

The following Intel documents deal specifically with software and hardware interfaces to Intel Flash memories:

RELATED INTEL INFORMATION(1, 2, 3)

Order Number Document

292046 AP-316 Using Flash Memory for In-System Reprogrammable Nonvolatile Storage

292059 AP-325 Guide to First Generation Flash Memory Reprogramming

292077 AP-341 Designing an Updateable BIOS Using Flash Memory

292095 AP-360 28F008SA Software Drivers

292099 AP-364 28F008SA Automation and Algorithms

292126 AP-377 16-Mbit Flash Product Family Software Drivers

292148 AP-604 Using Intel’s Boot Block Flash Memory Parameter Blocks to Replace EEPROM

292172 AP-617 Additional Flash Data Protection Using VPP, RP#, and WP#

297691 Technical Paper: Designing for Successful Flash Memory Read and Verify Operations

NOTES:
1. Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International customers should

contact their local Intel or distribution sales office.
2. Additional information can be requested from Intel’s automated FaxBack* system at (800) 628-2283 or (916) 356-3105

(+44(0)793-496646 in Europe).
3. Visit Intel’s World Wide Web home page at http://www.Intel.com for technical documentation and tools.

	TITLE PAGE
	CONTENTS
	1.0 INTRODUCTION
	2.0 PROGRAMMER TERMINOLOGY DEFINITIONS
	2.1 In-System-Write (ISW)
	2.2 On-Board Programmer (OBP)
	2.3 Component Programmer

	3.0 ON-BOARD PROGRAMMING STRENGTHS AND LIMITATIONS
	4.0 OBP PLATFORMS
	5.0 HARDWARE DESIGN CONSIDERATIONS FOR OBP INTERFACES
	6.0 SUMMARY
	APPENDIX A: Programmer Vendors
	APPENDIX B: Additional Information
	FIGURES
	Figure 1. The System CPU Controls In-System Writes to the Flash Meory Component
	Figure 2. The OBP Programmer Controls Flash Memory Update Operations
	Figure 3. The Component Programmer ControlsUpdate of the Flash Memory
	Figure 4. IC Containing JTAG Boundary-Scan Register
	Figure 5. The System CPU’ s JTAG Test Access Port Provides an Interface to Program Flash Memory

